
Two SSO Architectures with a Single Set of Credentials

Abstract

Single sign-on (SSO) is a widely used mechanism that uses a single action of

authentication and authority to permit an authorized user to access all computers and

systems. There are several SSO architectures. Some use a single set of credentials and

some use multiple credentials. Each has advantages and disadvantages. SSO

architectures with a single set of credentials are generally either Token-based or

Public Key Infrastructure-based. This report explores these two flavors in depth,

discusses their similarities and differences, and compares their strengths and

weaknesses.

Outline

1. What is SSO

1.1 Introduction

1.2 SSO terminologies

1.3 SSO architectures

2. SSO architectures with a single set of credentials

2.1 Token-based SSO system

2.1.1 Kerberos authentication protocol

2.1.2 Token-based SSO in HTTP environment

2.2 PKI-based SSO system

2.2.1 Integrating Public Key cryptography with Kerberos

3. Conclusions

4. References

1. What is SSO?

1.1 Introduction

Consider how many logons do you need each day to get your works done? If the

number of different applications you use is not large, this may not be a big issue, but

as the growing use of web-enable applications, the amount of time you spend on

typing various passwords to login might be unacceptable. Imagine that you are a

accountant that works in a big company, the first thing you usually do when you come

to your office each day is to logon to a number of, we say, 10 applications which

connect to databases that may locate in different companies. “A study conducted by

the Network Applications Consortium (http://www.netapps.org) in large enterprises

showed that users spend an average of up to 44 hours per year to perform logon tasks

to access a set of 4 applications. The same study measured the content of the calls to

companies’ helpdesk: 70 per cent of the calls were password reset requests.”[1]

The administration cost is also very high, no need to mention that managing multiple

credentials for each user are much more difficult than just managing one single

credentials. Furthermore, as the number of credentials for each user increase, so does

the possibility of losing or forgetting them.

Single Sign-on is the technology that aims to solve the above problems, one single

logon to the main authentication centre would subsequently enable user to get access

to all other resources available. Multiple logons are no longer needed.

1.2 SSO terminologies

Below are the most commonly used SSO terminologies.

Authentication authorities: authentication authorities are the entities that are

trusted by users to perform SSO functions [1].

Authentication servers: authentication servers are physical machines that

perform SSO functions [1].

Application servers: application servers are physical machines which serve client

machines.

Domain: a domain is a set of resource dominated by an authentication authority.

Credentials: There are various forms for those credentials: it might be, for example,

a simple username/password or certificate, but other methods can be implemented.

The SSO server performs a validation of the users' credentials using the underlying

security infrastructure

Server key: server keys are keys shared by authentication servers and application

servers.

Session key: Session keys are keys shared by client machines and application

servers, a client first need to registers at an authentication authority, the authentication

centre generate a session key and distribute it to both the client machine and the

application server.

1.3 SSO architectures:

In Jan De Clercq’s Single Sing-on architectures [1], SSO systems are divided into two

basic architectures: single SSO architecture and complex SSO architecture. Simple

SSO architecture is when there is only one authentication authority available, so there

is also just one set of credentials for each user. According to operating system vendors

like Novell and Microsoft, this architecture is could be easily implemented in

homogeneous LAN and intranet environment. Complex SSO architecture is when

there are multiple platforms and multiple credentials managed by multiple

authentication authorities. The situation for complex SSO architecture is much more

complex and harder to be accomplished. Complex SSO architecture could be further

distinguished to two basic schemes: complex SSO dealing with a single set of

credentials and complex SSO dealing with many different credentials. There are two

ways to accomplish complex SSO system dealing with a single set of credentials:

Token-based and Public Key-based. There are also a couple of ways to handle

complex SSO system dealing with many different credentials, but that is not the

concern of this report. This report aims to discuss and contrast Token-based and

PKI-based complex SSO systems.

2. SSO architectures with a single set of credentials

2.1 Token-based SSO system

The basic idea of Token-based SSO system is as follow: when a user submit the

credentials to the taken-based authentication authority, the authentication authority

check its credential database, if the credentials match, the user is then returned with a

token. This token is temporarily cached in the user’s computer until the user needs to

access another application server governed by another authentication authority, this

token is delivered to the secondary authentication authority to regain a ticket to the

application server, the successful of this process rely on the trust that the other

authentication authorities have on the primary authentication authority.

2.1.1 Kerberos authentication protocol

Kerberos is a distributed authentication system that was developed on mid 80’s as part

of MIT’s project Athena [2]. It is a classical implementation of Token-based

authentication protocol.

The paper “Kerberos: An Authentication Service for Computer Networks” [2] has

given a simplified version about how Kerberos protocol works. In this paper, the

whole process is divided into two parts: Authentication Request and Response,

Application Request and Response.

Authentication Request and Response: The client sends its request for the service of a

particular application server to the authentication server; the request includes the

client’s identity, the name of the application server, a requested expiration time for the

ticket and a random number which will be used to match the response. The

authentication server sends a response if this is a valid request. The response includes

the session key shared by the authentication server and the application server, the

expiration time, the name of application server and a ticket, all of these are encrypted

by the secret key shared by the client and authentication server.

Application Request and Response: as soon as the client receives the response, it

extracts the session key and other information with its secret key, and forwards the

ticket and an authenticator to the application server to prove its validity, the

authenticator include the current time, a checksum and an optional encryption key, all

encrypted with the session key. The application server decrypts the request with the

session key it owns, if the process goes smoothly, the application server assume that

the client is a valid user and return the data requested by the client. If a mutual

authentication is needed, the application server needs to extract the client’s time from

the authenticator, and then encrypt it with some other information and return it to the

client.

The simplified version of Kerberos authentication protocol ignores some important

parts of the authentication process, the author did give a graph of the complete

scheme but the explanation is not detailed enough. The complete scheme and detailed

explanation can be found in Ian Downnard’s paper Public-key cryptography

extensions into Kerberos [3].

If a client has to submit its credentials each time it calls for the service of a new

application server, the process would be cumbersome and perhaps more risky,

fortunately, this is not the case. In real Kerberos systems, the client initially submits

its credentials to the Key Distribution Centre (KDC), KDC consists of two parts:

Authentication Server (AS) and Ticket-Granting Server (TGS). AS validate the

credentials and return a Ticket Granting Ticket (TGT), TGT then permit the client to

request tickets to application servers.

2.1.2 Token-based SSO in HTTP environment

In paper “Single Sign-on architectures” [1], the author mentioned the token-based

SSO could be implemented by using cookies in HTTP environment when introducing

Token-based SSO architecture but no details are given. The paper “Single Sing-On

using Cookies for Web Applications” extends this architecture [4].

A cookie is a set of information given to the web browser by the web server and store

in the client machine, the server could then retrieve the information and provide

customized service for the client.

Kerberos system provide basis for constructing secure SSO in network environment,

however, it needs client side infrastructure and configuration. In HTTP-enabled

environment, cookies could be used to construct SSO system and no extra installation

or configuration is necessary.

The biggest difference between Kerberos system and Cookies-enabled SSO system is

that the former use Remote Procedure Calls to transport authentication tickets, while

the latter use cookies to play the role of tokens in Token-based SSO system.

2.2 PKI-based SSO system

There are two popular cryptographic methods: symmetric-key cryptography and

asymmetric-key cryptography. Symmetric-key cryptography uses the same key (secret

key) to encrypt and decrypt information. While for asymmetric-key cryptography, the

key used to encrypt (public key) and the key used to decrypt (private key) are

different. And the secret key could not be deduced from the public key.

Public Key cryptography is usually used to perform two main functions: (1).

Encryption/Decryption: a user could make his/her public key public so everybody

could send message encrypted with the public key to him/her, but the message could

only be decrypted with the corresponding private key kept by the user. (2) Digital

signature: a user could send a message encrypted with the private key to a receiver,

the receiver could then determine if the message came from the user by decrypting the

message with public key and check the originality of the message.

In conventional Token-based SSO system, symmetric-key cryptography is used to

encrypt the tickets, the authentication server must have application server’s secret key

stored in the database. In Kerberos system, Key Distribution Centre is responsible for

storing registered application server’s secret keys. Token-based SSO system works

well but it can be improved by adopting asymmetric-key cryptography in two aspects:

Firstly, registration is easier, because there are no needs to transfer the secrete key to

the authentication server, public key could be securely transported over the network

without worrying being exposed. Secondly, since there are no copies of secret keys

stored in the authentication centre, attackers could not compromise the system by

hacking and retrieving keys from authentication centre.

Strictly saying, PKI-based SSO system is still a kind of Token-based SSO system

because they differ in cryptographic methods but tokens are still used to permit the

client to get access to application servers.

2.2.1 Integrating Public Key cryptography with Kerberos

PKI-based SSO system is mentioned in paper “Single Sign-on Architectures” [1], the

basic structure is presented but little details are available. The paper “Public-key

cryptography extensions into Kerberos” [3] aims to describe the schemes to extend

Kerberos system with public key cryptography.

Although integrating Public Key with Token-based SSO like Kerberos could enhance

the security and scalability of the SSO system, the performance of Public Key

cryptography is the bottleneck. Poor performance of Public Key cryptography reflects

in two ways: (1). the size of Public Key is much larger than the size of Secret Key,

according to data provided by Ian Downnard [3], the Public Keys are usually 10 to 20

times larger than the Secret Keys. (2). the calculation process of encryption or

decryption with Public Keys takes much longer than the process with Secret Keys.

In this paper, author introduced three efforts made by researchers to extend Kerberos

system with Public Key infrastructure: Public Key cryptography for Initial

Authentication in Kerberos (PKINIT), Public Key cryptography for Cross Realm

Authentication in Kerberos (PKCROSS) and Public Key based Kerberos for

Distributed Authentication (PKDA).

PKINIT

Contrast to transitional Kerberos system, PKINIT use Public Key cryptography to

perform the initial authentication, if the authentication process is successful, the

remaining transaction will use secret keys that stored in KDC database.

In PKINIT system, a client send a request for TGT to the KDC along with the

credentials and digital signature, the KDC check the credentials and digital signature

to see if the request is valid. If the request is valid, KDC send the TGT encrypted with

the client’s public key back to the client. The message is encrypted with KDC’s

private key so the client could check the signature to make sure the message is sent by

a valid KDC. This is called mutual authentication.

PKCROSS

Public Key cryptography for Cross Realm Authentication in Kerberos, as its name

suggest, is designed to build cross-realm Public Key SSO system.

The Public Key cryptography of the system takes place only between local KDC and

remote KDC. “The messages exchanged between the two key distributions centers

closely follow the PKINIT specification, with the local key distribution center acting

as the client.”[3]

Since PKINIT use Public Key cryptography between the client and the local KDC and

PKCROSS use Public Key cryptography between local KDC and remote KDC, the

author suggests that the Public Key cryptography can be applied to the whole

Kerberos framework by integrating PKINIT with PKCROSS [3].

PKDA

PKDA is a created to enhance privacy of the clients and improve scalability and

security of Kerberos system. It is a totally different approach compared to PKINIT

and PKCROSS. “Client-side privacy is increased by simply ‘moving the client

identity fields from unencrypted to encrypted portions’ of the authentication messages.

Increased scalability and security is attempted by moving authentication procedures

away from centralized key distribution centers to between the individual clients and

application servers on a network.”[3]

KDC is totally made redundant in PKDA, clients do not rely on KDC for initial

authentication, and all services are between clients and application center supported

by Public Key cryptography.

PKDA has been expected to perform better than PKINI and PKCROSS because it

avoids the bottleneck of KDC; however, the practice shows that PKDA may not

necessarily faster than PKINI or PKCROSS because it needs Public Key

cryptography each time a client require service from a application server.

3. Conclusions

There are two main solutions for SSO systems dealing with a single set of credentials:

Token-based SSO and PKI-based SSO, Token-based SSO has inherent drawbacks

using Secret Key cryptography for transactions. PKI-based SSO is designed to

improve security and scalability of Token-based SSO by extending Public Key

cryptography in the process of validating tokens.

Kerberos authentication protocol is a classical example of Token-based SSO system,

Kerberos system provide secure means of authentication by adopting Secret Key

encryption and mutual authentication. Token-based SSO in HTTP environment could

also be achieved by using HHTP cookies without the needs for client side instillation

and configurations.

Researches have been trying to develop mature Kerberos system with Public Key

cryptography support. PKINT, PKCROSS and PKDA are results of these efforts.

PKINI use Public Key cryptography to perform an initial registration and use Secret

Key to perform subsequent services, PKCROSS use Public Key cryptography to

perform cross realm transactions. PKDA made a fundamental change to Kerberos

standard by removing KDC and perform mutual authentication between clients and

applications servers.

4. References

[1] J. De Clercq, “Single Sign-On Architectures” In G. Davida et al. (eds.): InfraSec

2002, LNCS 2437, 2002. Pages: 40-58,

[2] Neuman B.C. Ts'o T, “Kerberos: An Authentication Service for Computer

Networks” Communications Magazine, IEEE, Volume: 32, Issue: 9, Sept. 1994. Pages:

33 - 38

[3] Downnard I, “Public-key cryptography extensions into Kerberos” Potentials,

IEEE, Volume: 21, Issue: 5, Dec. 2002-Jan. 2003. Pages: 30 - 34

[4] Sama V, “Single Sign-on using Cookies for Web applications” Enabling

Technologies: Infrastructure for Collaborative Enterprises, 1999. (WET ICE '99)

Proceedings. IEEE 8th International Workshops on, 16-18 June 1999. Pages: 158 -

163

